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The three-dimensional turbulent field of a passive scalar has been mapped 
quantitatively by obtaining, effectively instantaneously, several closely spaced 
parallel two-dimensional images ; the two-dimensional images themselves have been 
obtamed by laser-induced fluorescence. Turbulent jets and wakes a t  moderate 
Reynolds numbers are used as examples. The working fluid is water. The spatial 
resolution of the measurements is about four Kolmogorov scales. The first 
contribution of this work concerns the three-dimensional nature of the boundary of 
the scalar-marked regions (the ‘scalar interface ’). It is concluded that interface 
regions detached from the main body are exceptional occurrences (if at all), and that 
in spite of the large structure, the randomness associated with small-scale 
convolutions of the interface are strong enough that any two intersections of it by 
parallel planes are essentially uncorrelated even if the separation distances are no 
more than a few Kolmogorov scales. The fractal dimension of the interface is 
determined directly by box-counting in three dimensions, and the value of 2.35 k0.04 
is shown to be in good agreement with that previously inferred from two-dimensional 
sections. This justifies the use of the method of intersections. The second contribution 
involves the joint statistics of the scalar field and the quantity x* (or its components), 
x* being the appropriate approximation to the scalar ‘dissipation’ field in the 
inertial-convective range of scales. The third aspect relates to the multifractal scaling 
properties of  the spatial intermittency of x* ; since all three components of x* have 
been obtained effectively simultaneously, inferences concerning the scaling properties 
of the individual components and their sum have been possible. The usefulness of the 
multifractal approach for describing highly intermittent distributions of x* and its 
components is explored by measuring the so-called singularity spectrum (or the f (a) -  
curve) which quantifies the spatial distribution of various strengths of x*. Also 
obtained is a time sequence of two-dimensional images with the temporal resolution 
on the order of a few Batchelor timescales; this enables us to infer features of 
temporal intermittency in turbulent flows, and qualitatively the propagation speeds 
of the scalar interface. Finally, a few issues relating to the resolution effects have 
been addressed briefly by making point measurements with the spatial and temporal 
resolutions comparable with the Batchelor lengthscale and the corresponding 
timescale. 

1. Introduction 
A capability to map quantitatively the turbulent velocity and/or passive scalar 

fields in three-dimensional space would be of immense value in understanding the 
dynamics as well as the topology of spatial structures. The issues that can be settled 
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by such efforts are both basic and practical, and we assume that it is not necessary 
to dwell on them a t  great length. Some examples are the three-dimensional nature 
of the interface bounding the vortical or scalar-marked regions, the joint statistics of 
the scalar concentration and its dissipation rate (of interest in fast chemistry 
reactions), the scaling relations of energy and scalar dissipation fields, issues 
concerning local isotropy, shapes and sizes of coherent structures, etc. Here, we 
describe a technique for mapping quantitatively the three-dimensional field of a 
passive scalar, and present results concerning several aspects associated with it. We 
also obtain with excellent resolution a temporal sequence of the scalar field both in 
one and two dimensions. 

The technique consists of obtaining several closely spaced parallel two-dimensional 
images essentially instantaneously, and reconstructing the three-dimensional field on 
the computer using appropriate reconstruction algorithms. Two-dimensional images 
are obtained by the laser-induced fluorescence (LIF) technique (see, for example, 
Dimotakis, Lye & Papantoniou 1983). LIF involves doping the turbulent flow of 
interest by a fluorescent dye, inducing fluorescence by illuminating it with a thin 
sheet of laser light, and capturing the fluorescence radiation in the plane on to a 
digital camera. Under conditions to  be discussed later, the fluorescence radiation is 
directly proportional to the dye concentration. Several such two-dimensional images 
of the concentration field are obtained in rapid succession by sweeping the laser sheet 
through the flow field. The succession of two-dimensional images is captured 
quantitatively on an array of charge-coupled devices (CCD) using a framing camera 
capable of operating a t  the rate of lo4 frames per second. The time lapse during the 
entire sequence is small enough that effectively no fluid motion occurs even on the 
smallest dynamical scale. The digital data are then processed on a computer. 

In  the past, single ‘point’ measurements of the three components of the scalar 
dissipation have been made by using a combination of cold wires (e.g. Sreenivasan, 
Antonia & Danh 1977). I n  recent years, several research groups (Yip, Fourguette &, 
Long 1986; Kychakoff et al. 1987; Agiii & Hesselink 1988) have taken advantage of 
the repeatability of the large structure in externally driven flows, and have obtained 
the scalar field in three dimensions. So far as we are aware, the only previous 
successful effort similar in scope to the present (namely the quantitative mapping of 
the passive scalar field in naturally developing turbulent flows) is due to Yip et al. 
(1987) ; see also Yip (1988). Yip et al. essentially developed the present technique and 
used it in gas jets. We use LIF instead of Rayleigh scattering and work with 
moderate-Reynolds-number water jets. It is unfortunate that with Yip’s measure- 
ments there were difficulties in matching pixel positions in nearby parallel 
images, which made it difficult to extaract quantitative information concerning the 
derivatives of the scalar field. In the present measurements, this difficulty has been 
surmounted as described in 82.4. 

Two other efforts a t  three-dimensional imaging must be mentioned. A closely 
related effort by Lynch et al. (1985) in the near-wall region of low-Reynolds-number 
boundary layers appeared promising, but does not seem to have been pursued to a 
stage of fruition. Dahm & Buch (1989) used a stationary laser sheet and obtain 
successive frames a t  the same physical station a t  closely spaced times. This can be 
interpreted as three-dimensional imaging if Taylor’s hypothesis is invoked in two 
dimensions ; this hypothesis introduces uncertainties of unknown nature and may 
limit the effectiveness of the technique for certain purposes. 

The present measurements have been made in round jets and wakes behind 
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circular cylinders, both generated at  moderately large Reynolds numbers ; the 
working fluid is water. A quantity of interest is the three-dimensional nature of the 
boundary marking the scalar-marked regions. Another quantity concerns (an 
approximation to) the dissipation field of the scalar concentration. Historically, such 
flow properties have been measured using point probes. When the Schmidt number 
Sc is unity or smaller (the Schmidt number being the ratio of the kinematic viscosity 
to the mass diffusivity of the scalar), the temporal characteristics of these 
measurements is excellent (good resolution, large record lengths) but the spatial 
information they yield is very limited. Two-dimensional LIE” images in the recent 
past have provided useful information in a plane (e.g. Dimotakis et al. 1983 ; Prasad, 
Meneveau & Sreenivasan 1988). By the technique used here, on the other hand, we 
obtain information in three-dimensional space. 

The best spatial resolution attained in the present experiments is about 37, where 
the Kolmogorov scale 7 represents the smallest dynamically relevant scale (averaged 
over the flow domain). For passive scalars with Sc + 1 ,  the appropriate smallest scale 
is the Batchelor scale gb = ySc-f (Batchelor 1959). The fluorescing dye (sodium 
fluorescein) has a Schmidt number of about 1900 (see Ware et al. 1983), and so the 
Batchelor scale is much smaller than the best resolution attained here. The essential 
point is that, in spite of this limitation, the present measurements will enable us to 
assess the scaling properties of the scalar dissipation structure in the inertial- 
convective range. In  any case, we shall address the issues related to the resolution 
effects by two complementary sets of measurements. First, we obtain a time 
sequence of two-dimensional digital images with much finer temporal resolution. 
Incidentally, this permits us to make some remarks on temporal intermittency - an 
aspect that  has not been studied before. Secondly, we obtain point measurements 
with spatial and temporal resolutions comparable with the Batchelor lengthscale and 
the corresponding timescale. Our remarks on these latter measurements will, 
however, be mainly limited to the issue of resolution. (A partial account of these 
measurements has appeared in Sreenivasan & Prasad 1989, and we expect to  publish 
full details separately.) 

The present measurements enable us to make qualitative statements about aspects 
such as the connectivity in three dimensions of the scalar-marked regions or the 
contiguity or otherwise of the interface. (We must make the obvious cautionary note 
that the scalar-marked regions do not necessarily correspond to regions containing 
turbulent vorticity.) We can also obtain the fractal dimension of the interface 
directly by box counting in three dimensions without invoking the additive laws (see 
Sreenivasan & Meneveau 1986; Prasad & Sreenivasan 1990) that one should use to 
interpret measurements in lower-dimensional subspaces. 

We have computed low-order moments of the concentration field and of its 
‘dissipation’ rate averaged over the spatial domain - the quotation marks here 
serving as a reminder that all scales have not been resolved. We explore in particular 
differences and similarities among the three components of the ‘dissipation ’ field. 
Finally, joint statistics are obtained of the concentration fluctuation and its 
gradients, and the fluctuation and its ‘dissipation ’. 

By experimental techniques such as the present, or by direct numerical solution on 
a massive computer of the governing equations, it is now possible to  generate massive 
amounts of data. One of the pertinent questions today is to sort the data in a useful 
way. We have already addressed this issue partially in the context of two- 
dimensional images, for which we obtained the so-called generalized dimensions and 
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the singularity spectra. The significance of these quantities, without going into too 
many details here, is the following. In  statistical mechanics, first-order information 
is carried by the thermodynamic quantities such as temperature, internal energy, 
entropy, free energy, etc. If we treat a given turbulent field as a statistical 
mechanical system (in the sense to be explained in $41, the generalized dimensions 
and the singularity spectra correspond to such ‘ thermodynamic ’ quantities. We 
extract these ‘thermodynamic ’ quantities from the present data. 

Section 2 contains a description of experimental techniques, while $3 is a summary 
of results related to the scalar interface and outer intermittency. In  $4, the 
multifractal nature of the scalar ‘ dissipation ’ field (an example of ‘ internal 
intermittency’) is described. The paper concludes with a discussion in $5 of the 
principal contributions of this work. 

2. Flow facilities and experimental techniques 
2.1. Flow facilities 

Two fully developed turbulent flows were studied. The wake behind a circular 
cylinder was produced by lowering a tank of water (total mass about 800 kg) past a 
rigidly mounted cylinder. The cylinder used was 1 cm in diameter and had an aspect 
ratio of 58. The tank was lowered a t  a constant speed of 15 cm/s by means of a 
hydraulic lift. The reason that the tank, rather than the cylinder, was moved is that 
the water-filled tank, being much more massive than the cylinder, vibrates far less; 
it also eliminates the need for elaborate flow management devices upstream of the 
flow generator. The fluorescent dye (sodium fluorescein) that seeped into the wake 
from a narrow channel cut along the length of the cylinder - either at the front or 
the back stagnation regions - was mixed by the turbulence in the wake. These dye- 
marked regions were imaged and analysed. 

The Reynolds number of 1500 (based on the cylinder diameter and the free-stream 
relative speed) is moderate. The smallest dynamical scale, the Kolmogorov scale 7, 
was estimated to be about 150 pm. The Batchelor scale T~ = qSc-4 was estimated to 
be of the order of 4 pm. 

The axisymmetric jet was produced by allowing water to flow from a settling 
chamber through a nozzle of circular cross-section into a tank of still water a t  a 
constant speed of about 35 cm/s. The nozzle (diameter 1.2 cm) was contoured 
according a fifth-order polynomial to have zero slopes and curvature at the entrance 
and the exit. The contraction ratio was about 10. It was established by running 
separate air experiments that there were no internal separation in the nozzle. The 
water that issued from the nozzle was dyed with the fluorescent dye. Again, the flow 
regions marked by the dye were imaged. The Reynolds number based on nozzle 
diameter and velocity is about 4000, and the estimated Kolmogorov and Batchelor 
scales are 160 and 4 pm respectively. 

2.2. Mapping the flow field 
Since the basic experimental technique involves obtaining several parallel two- 
dimensional sections, details described in another paper (Prasad & Sreenivasan 
1990) are relevant, and the reader is referred to it. Here, a brief summary of those 
aspects is provided. Additional details involved in three-dimensional imaging are 
described in full. 

( a )  Two-dimensional imaging. I n  both flows the dye concentration was mapped 
quantitatively using the LIF technique. Fluorescence was excited in the dye by 



Quantitative imaging of passive scalar fields 5 

FIGURE 1. Schematic of the experimental apparatus used for three-dimensional imaging. Shown is 
the orientation of the cylinder whose wake is the object of imaging here. The continuous Argon 
h e r  haa an output of 7 W. 

illuminating the flow with a pulsed sheet of laser radiation. LIF occurs owing to the 
emission of photons when an excited ion or molecule decays back into its ground 
state. The lifetime of this process is on the order of lo-* s. The number of photons 
emitted or the fluorescence intensity is proportional to the number of excited 
molecules or ions, which in turn is proportional to the number of ground-state ions 
or molecules and the illuminating light intensity. If the number of ground-state 
molecules is too large the fluorescence intensity decays &s the light travels through 
the fluorescing medium ; in such a case the fluorescence is saturated. If, however, the 
fluorescent dye concentration is small there is no significant change in the light 
intensity as the radiation traverses the medium. The fluorescence intensity is then 
directly proportional to the dye concentration. Care was taken to ensure that this 
was indeed the case in the present experiments. For instance, this was checked by 
doubling the dye concentration and observing that the intensity was correspondingly 
doubled. 

( b )  Three-dimensional imaging. If, instead of using a pulsed laser, a continuous 
sheet of laser radiation rapidly sweeping through the flow is used in conjunction with 
a camera having fast enough shutter speed and high enough repetition rate, several 
parallel instantaneous two-dimensional maps of the concentration field could be 
simultaneously obtained. If these planes are sufficiently close to each other one can 
reconstruct the three-dimensional field on a computer. 

A schematic of the experimental apparatus is shown in figure 1. The beam from a 
7 W Argon ion laser was guided to the flow field using the two mirrors labelled M and 
RM. The 4 m m  diameter circular beam from the laser was converted to a sheet 
approximately 200 pm thick by a combination of two lenses L, one cylindrical (focal 
length = 25.4 mm) and another spherical (focal length = 1000 mm). The fluorescence 
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excited by the laser radiation was imaged by the framing camera FC, capable of 
acquiring a sequence of up to 16 frames a t  a rate of lo4 framesls. The images 
captured by the framing camera are then digitized and stored by the CCD camera 
having a large format CCD chip with an array of 1320 x 1035 pixels. 

The flow seeded with the fluorescent dye was created in the tank ; the figure shows 
the cylinder C used for the wake experiments. The sheet of laser radiation was swept 
through the flow field using the rotating mirror RM. At different discrete times, the 
sheet of light produces LIF in different planes. Given the framing rate of the camera, 
the speed of the rotating mirror was adjusted to  yield an interplane distance of 
500 pm. The distance of 140 cm between the rotating mirror and the region of the 
flow imaged is large compared to the interplane distance so that any two adjacent 
sheets of laser radiation can be regarded as parallel. 

While in essence the scheme is simple, the technique is rendered possible only 
because of the speed a t  which the framing camera can acquire images. The exposure 
time for each image is 20 ps (which is negligibly small compared to all pertinent 
timescales in the flow) and the interframe period is 80 ps. Thus the overall time 
required to capture the sequence of 8 parallel two-dimensional images is 800 ps. This 
time is also tolerably small compared with the timescales of interest in the flow, 
enabling an effectively instantaneous measure to be obtained of the concentration 
field in three dimensions. The framing camera writes, in sequence, each of the images 
it acquires on a phosphor screen. This phosphor screen, which contains all the images 
acquired by the framing camera, is then imaged optically by the CCD camera. Thus 
a single frame of the CCD camera acquires all eight frames captured by the framing 
camera. This imposes a limitation on the spatial extent of each of the images. Also 
the resolution of the images is limited to the resolution of the phosphor screen, which 
was 7 line pairs per mm (i.e. the closest pair of lines that can be distinguished are 
75 pm apart on the phosphor screen). Since the image reduction ratio used in the 
experiments is 6, this limits the spatial resolution to  450 pm. This is also the rationale 
for adjusting the speed of the rotating mirror to yield an interframe separation of 
about 500 pm. 

A critical element of quantitative data analysis is the integrity of data. This is 
established here in two ways. First, several a priori considerations were given to 
enhance the quality of data acquisition. Second, comparisons were made as 
appropriate with previous data of known accuracy. Some of these data are obtained 
by standard point probes (such as cold wires in heated flows), but some of the present 
data have no analogues in such point measurements. In  these latter cases, we have 
made comparisons with our own earlier data in which the entire CCD array was used 
to acquire single images. The resolution in the single frame images was better by a 
factor of three, and the flow extent imaged was larger by a factor of approximately 
four. Furthermore, since single frame measurements were made with a pulsed laser 
with a higher power density than the continuous laser used in the present 
experiments, the signal t,o noise ratio in the single frame measurements was 
substantially better ; the quality of those signals has independently been established 
by several means including spectral analysis (Prasad & Sreenivasan 1990). Our 
estimate, based on a simple scheme described by Prasad & Sreenivasan (1989), is 
that this ratio in the single frame images was 65 whereas it was about half as high in 
the sequential images. For these reasons, we felt that  a comparison with the earlier 
single frame measurements serves a useful purpose. To serve both as an example and 
for use at a later stage, we present in figure 2 a single frame image of a turbulent jet 
a t  a Reynolds number comparable with the present experiments. 
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FIGURE 2 .  A two-dimensional slice of a turbulent jet at a nozzle Reynolds number of about 4000, 
obtained by the LIF technique. The entire extent of the CCD array (1300 x 1000 pixels was used 
to  obtain this image. The region imaged extends from 8 to  24 diameters downstream of the nozzle. 
A Nd : YAG laser beam shaped into a sheet of about 250 pm thickness using a suitable lense was 
directed into the water tank into which the nozzle fluid containing small amounts of a fluorescing 
dye was emerging in the form of a jet. The laser had a power density of 2 x 10' J s-l per pulse and 
a pulse duration of about 10 ns. 
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2.3. Procedures for obtaining high quality images 
Below, we shall describe procedures essential for acquiring high quality images, but 
defer comparisons with single frame data to appropriate places in the later sections. 
The following remarks are specific to the jet, but similar remarks apply to other 
flows. 

(i) If the jet is run for long periods of time the tank fluid gets contaminated by the 
dye and develops background fluorescence. To remove this source of noise it is 
necessary to acquire the image soon after the jet has settled down to its final state, 
and to flush out the tank water after each run and replace it with clear water. 

(ii) For all data acquisition, the room was darkened to minimize spurious 
illumination. Water filtered by two filters in tandem was used. However, since filters 
do not remove all particles, the imaging system will detect, in addition to the 
fluorescence intensity from the nozzle fluid, the light scattered by stray particles 
present in the tank water, To separate scattered radiation from the fluorescence 
radiation, we note that the former has the same wavelength as that of the incoming 
laser light and that the fluorescence radiation is of a longer wavelength. Thus a long- 
pass optical filter was used to minimize the scattered radiation from the detector. 
Figure 3 ahows a comparison between the unfiltered and optically filtered spectra, 
obtained using a Jarrell-Ash monochrometer with 0.1 nm resolution. The sharp peak 
near 532 nm in figure 3(a)  corresponds to the scattered laser radiation from stray 
particles. The fluorescence itself peaks at  a slightly higher wavelength (-545 nm), 
but is essentially broadband. Hence, a filter which cuts off light below a wavelength 
of 540 nm would be desirable. A Corin optics long-pass filter with a cut off at 550 nm 
was used. The filter removes all but a small fraction of the 532 nm radiation, but also 
some of the fluorescence intensity (figure 3 b ) .  But this causes no problems if the 
incident laser intensity is sufficiently high (as in the present experiments). 

(iii) The images were captured directly on the CCD camera digitally rather than 
first acquiring a photograph and subsequently digitizing it. This eliminates errors 
due to nonlinearities associated with the process of developing the photographic film, 
a process that cannot be controlled easily to the required accuracy. The dynamic 
range of the photographic film is also limited (roughly 300 grey levels) compared with 
that of a digitizing camera (4096 levels on the 12-bit camera used here). 

(iv) The CCD array itself has a small amount of dark noise, i.e. the charge that 
accumulates on each pixel without any photon impingement. This dark noise was 
subtracted from the images. 

(v) It is also necessary to take into account the variations in laser intensity across 
the sheet due to the laser itself, and the optics through which the beam passes. This 
was achieved by uniformly dyeing the fluid in a smaller tank and capturing the 
fluorescence intensity. (To ensure that the optical path was identical in the two cases, 
this smaller tank was placed in the middle of the big tank used in other experiments, 
filled with filtered water in the usual way. Needless to say, the jet was turned off.) 
This image was subsequently used to normalize all flow images. The corrected pixel 
intensity was calculated as : 

(CCD intensity for the jet flow-noise) 
(CCD intensity for the uniformly dyed fluid-noise) ' 

Corrected pixel intensity = 

(2.1) 
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FIGURE 3. Comparison of the (a)  unfiltered and ( b )  optically filtered fluorescence spectra. The sharp 
peak in (a )  at a wavelength of 532 nm is the result of scattered radiation by particles in the fluid. 
By using an appropriate filter, its magnitude can be cut down significantly as seen in ( b ) .  The 
optical filter also cuts off some radiation due to fluorescence, but this is not a serious problem if the 
incident laser intensity is sufficiently large. 

2.4. Matching pixels in two successive parallel images 
We can thus obtain several parallel two-dimensional images. To obtain a composite 
three-dimensional image, it is necessary to make a perfect pixel match between two 
parallel images. This becomes especially important for obtaining concentration 
gradients in the z-direction, i:e. the direction in which the laser sheet rotates. To do 
this, a stationary object such as a meter scale or a stationary blob of dye in the plane 
of the visualization was imaged using the framing and CCD camera set-up. Each of 
the eight images of the sequence was first roughly cut and overlayed in pairs of two, 
taking the difference in intensity. The images were then moved around with respect 
to each other to minimize the difference in intensity. This minimum occurs only when 
the successive images have perfect pixel matching. No substantial distortion in shape 
of the stationary object was evident since the difference images were uniformly zero 
to excellent accuracy. Subsequent sequences of parallel planes were all aligned using 
this information ; the difference in pixel intensity between two parallel planes gives 
a correct measure of the z-gradient of the concentration fluctuations. 

2.5. The experiments 
2.5.1. The wake behind a circular cylinder 

As already remarked, each pixel has an area resolution of about 500 pm x 500 pm, 
and the distance between any two parallel images was arranged (by adjusting the 
speed of the rotating mirror) to be about 500 pm, so that quantitative data on the 
concentration field is available on a three-dimensional grid of 500 pm on the side. In 
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FIGURE 4. For caption see facing page. 
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dynamical terms, this resolution translates to about 4 Kolmogorov scales. So far, we 
have worked with eight parallel planes, each 175 pixels x 150 pixels in extent, 
although in rare instances double the number of parallel planes were obtained. 

A typical experimental run proceeds as follows. The tank is filled with filtered 
water and raised using a hydraulic lift such that the circular cylinder is close to 
the bottom of the tank. After a long settling time, the dye is allowed to flow from 
the slit cut along the lower end of the cylinder and the tank is lowered at the desired 
speed producing the wake. As the tank drops the wake is illuminated by the rotating 
laser beam. When the bottom of the tank receeds to about 120 diameters 
downstream of the cylinder the shutters of the framing camera and the CCD camera 
are opened. A photodiode then detects the presence of the laser sheet in the region 
being imaged and triggers the electronics in the framing camera that acquires the 
images. Figure 4 shows the concentration field on a typical set of eight parallel 
planes. Each image of the wake extends approximately from 70 to 80 diameters 
downstream of the cylinder. The extent of the images in the direction of the largest 
shear is about 4 cylinder diameters on either side of the axis. 

2.5.2. The axisymmetric jet 
The procedure was essentially the same as that used for the wakes. The region 

imaged in the jet extended from 13 to 21 diameters downstream of the nozzle. The 
pixel resolution as well as the sheet thickness remain the same, and so quantitative 
data on the concentration field is available (as before) on a grid 500 pm on the side, 
with comparable resolution in terms of the Kolmogorov scale. Again eight parallel 
planes were acquired. The tank was first filled with clear, filtered water and the jet 
was turned on after considerable settling time. The flow was illuminated by the 
rotating laser sheet, and the image acquisition process was begun after the front of 
jet fluid emerging from the nozzle was well past the region that was imaged; this 
ensures that the images do not correspond to the transient states of the jet. The 
shutters on both framing and CCD cameras were opened and the imaging electronics 
on the framing camera triggered once the photodiode detected the laser sheet in the 
imaged volume. Figure 5 shows a typical set of eight parallel planes, each displaying 
the concentration of the scalar-marked regions. 

3. The geometry of the scalar interface 
An interface of primary interest in the study of turbulence is that separating 

regions of intense and zero vorticity ; another such interface is that separating the 
scalar-marked regions of the flow from that remaining (the ‘scalar interface ’). From 
the images acquired here, one can examine several features of the scalar interface. 
Elsewhere (Prasad & Sreenivasan 1990) we have discussed several methods of 
marking this interface, but the simplest - and for the present purposes quite 
adequate - procedure involves setting an appropriate threshold on pixel intensity. 
Figure 6 shows the interface determined in each of the planes in a three-dimensional 

FIQURE 4. Concentration field of scalar-marked regions of a turbulent wake behind a circular 
cylinder in a set of eight parallel planes. The flow moves from left to right in each of the eight 
planes. The plane farthest from the cameras is the plane in the bottom right corner of the image. 
As one moves from right to left in the figure and then from bottom to top the planes move closer 
to the cameras. 
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FIGURE 5 .  For caption see facing page. 
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sequence of wake images (marked in white). It is obvious that the interface is highly 
convoluted and three-dimensional. We now turn to its characterization. 

3.1. The intermittency factor 
An obvious manifestation of the interface, namely the intermittency factor, has been 
measured by many workers starting with Townsend (1948), Corrsin & Kistler (1955) 
and Klebanoff (1955). As defined originally, the intermittency factor defines the 
fraction of time that a point probe resides in the turbulent region as the turbulent 
structures convect past it. (Although the intermittency factor suffers from several 
drawbacks (Sreenivasan 1985; Chatwin & Sullivan 1989), we have chosen to present 
it mainly because of its historical status.) From two-dimensional images we can 
obtain a corresponding quantity by scanning several lines perpendicular to the jet 
axis and determining the number of pixels that are within the scalar-mixed region. 
For the fully turbulent regions of the jet, figure 7 shows a comparison of the 
intermittency factor from single frame images and from the present experiments. 
Except for some minor differences, which are probably due to the finite sample sizes, 
the agreement is good. 

It must be mentioned that, in spite of figure 7, the peak intermittency factor is not 
always exactly unity for the concentration field of high-Schmidt-number scalars in 
the jet. We have noticed several occasions where the intermittency factor was clearly 
smaller than unity, although not very far from it. This appears to be different from 
the intermittency factor deduced from vorticity measurements (or its surrogates). 
Another difference is that the intermittency factor in most measurements of the 
latter variety is unity, or very close to it, until much further out in the radial 
direction than figure 7 shows. It is not clear how much of this is due to the relatively 
poor resolution of the single point probes in past measurements (typically several 
Kolmogorov thicknesses in the case of heated jets), and how much due to the high 
Schmidt number of the scalar in the present measurements. We know from temporal 
measurements in which the Batchelor scale has been resolved (to be described 
very briefly in 94.4) that resolution effects could be important in quantifying 
intermittency . 

3.2. Moments of the concentration field 
Table 1 compares the present data for jets on the skewness S and flatness factor F 
of the concentration field, c .  These quantities are defined as 

s = N-1C ( c -  (c))3/c’3, 
F = N-l C ( C -  ( c ) ) ~ / c ’ ~ ,  

where <c) = N-’ c ,  and c ’ ~  = N-’ C ( c -  ( c ) ) ~ ,  N being the total number of pixels in 
the image. Since no corresponding data exist except in our own earlier single frame 
images, we include in table 1 a comparison with only those data. The agreement for 
jets is good to within about 20%, and is similar for wakes. 

For completeness, we present in figure 8 the probability density function (p.d.f.) 
of the concentration field. In the units of the abscissa, the dynamic range of the CCD 
array is 4096. (It would have been preferable, although not necessary for present 
purposes, to normalize the concentration by the nozzle fluid concentration ; 

FIGURE 5. Concentration field of scalar-marked regions of a turbulent axisymmetric jet in a set of 
eight parallel planes. The flow moves from left to right in each of the eight planes. The plane 
farthest from the cameras is the plane in the bottom right corner of the image. As one moves from 
right to left in the figure and then from bottom to top the planes move closer to the cameras. 
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FIGURE 6. For caption see facing page. 
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Y l D  

FIGURE 7. A comparison of the intermittency factor obtained from single frame images (-) as 
well as a three-dimensional sequence (-----). The averaging is performed over a streamwise extent 
of a few diameters. One single frame image and a complete set of eight images in the three- 
dimensional sequence were used. 

S F 

Present data (average of 9 images) 1.08 4.80 
Data from single-frame images (average of 5 images) 1.31 4.52 

TABLE 1. The skewness and flatness factor data of the concentration field from the three- 
dimensional sequence and from single-frame images 

unfortunately, we do not know the latter quantity exactly.) The ordinate is simply 
the number of pixels with a given intensity normalized by the total number of pixels ; 
to emphasize the tails, we have plotted the probability on the logarithmic scale. The 
peak in the low-concentration region corresponds to the external noise in the image. 
Following Bilger, Antonia & Sreenivasan (1978), this is related to the free-stream 
noise effects convolving with the concentration fluctuation in the flow ; if the noise 
is small, i t  can be approximated reasonably well by a Gaussian. An interesting aspect 
of the plot is the exponential part over two decades of the probability scale. Similar 
exponential tails have been noticed in single point measurements in convection 
experiments a t  high Rayleigh numbers (Castaing et al. 1989). 

3.3. Three-dimensional structure of the scalar interface 
A two-dimensional image such as figure 2 shows some scalar-marked regions that 
appear to be detached from the main body of the flow ; one such region is indicated 
by the letter D in figure 2. It is conceivable that this part is really not detached a t  

FIGURE 6. The sequence of wake images shown in figure 4 and the computer generated curve 
(shown in white) bounding the scalar-marked regions in the wake. 
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FIGURE 8. The probability density of the concentration field obtained from a typical set of images. 
The peak at the low concentration values is that due to free-stream noise effects. In  the absence 
of noise, this will be a delta function corresponding to zero concentration. 

all but is contiguous with the main body through an out-of-plane connection. This 
question can be resolved, a t  least partly, by the present sequence of parallel two- 
dimensional images. We have marked, again by the letter D, in the picture to the 
bottom right (farthest from the camera) of figure 5 to indicate an apparently 
detached region. However, the connection to the main jet is clearly established in the 
fourth picture in the sequence (second from the bottom in the left column). The wake 
images have similar occurrences also, but cases seem to exist where one may imagine 
isolated regions that appear and disappear within the sequence, leading to the 
potential conclusion that isolated patches indeed occur ; our informed judgement 
from an examination of several sequences is that out-of-plane connections are 
plausible outside of the range of the images. But it appears safe to conclude that 
extensive disconnected regions do not exist. We draw attention to Pope (1988) which 
examines theoretically the conservation of the topology of material surfaces in 
incompressible flows and draws compatible conclusions. 

A glance a t  the sequence of images in figures 4 and 5 shows that the large structure 
present in the interface persists from one parallel plane to the next. Their precise 
shapes and sizes cannot be ascertained without sophisticated signal processing, the 
most recent contribution in this regard being that of Everson, Sirovich & Sreenivasan 
(1990). The small structure is different from one picture to another. The small-scale 
variations are in fact so prevalent that locally any two neighbouring sections of the 
interface have very little correlation on the average. It is difficult to devise the most 
natural and intuitively appealing quantifier of this correlation that is also easy to 
compute, but a simple scheme may be based on the notion that the interface in one 
of its sections is locally well correlated with the neighbouring one if, €or the same z- 
coordinate, the slopes in the (x,y)-plane are the same in the two sections. The 
following paragraph describes the implementation of this technique. We emphasize 
that this is not the only scheme possible. 

All eight parallel planes forming a three-dimensional sequence are covered with 
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Interface pixel position Interface pixel position Slope 

Upper left Lower right - 1  

Upper right 0 
Lower left Upper right 1 
Lower left Lower right 0 
Lower right Upper right 1 

Lower left - 1  

IF 

TABLE 2. The scheme used for assigning the slopes for the interface. See text for details 

boxes, each of which is 2 pixels on the side. The direction of the image scanning (by 
arbitrary convention) is from left to right and top to bottom. If, in a given box, the 
top left pixel and the bottom right pixel are both interface pixels (that is, the 
interface passes through them), the slope of the interface for that box is considered 
negative and assigned the value - 1 .  Other combinations of slopes and values 
assigned to them (1,  - 1 or 0) are listed in table 2. Once the slopes of the interface 
in all boxes containing the interface are assigned, the correlation calculation can be 
made. Consider any two parallel planes. If two boxes at the same location in the two 
planes have the same slope, the interface in the two boxes is obviously correlated, 
giving for the product of the slopes a value unity in those boxes. If the boxes have 
slopes 1 and - 1 the interfaces in the two boxes are anti-correlated, and the index is 
assigned a value - 1. Such comparisons are carried out for all pairs of boxes in the 
two chosen images, and a correlation is obtained by summing the indices. This sum 
is normalized to the total number of boxes containing the interface in one of the two 
planes. (The number of boxes in any two planes is not exactly the same, but the 
fractional difference is sufficiently small that the precise choice makes no substantial 
difference to the outcome.) The value 1 for the correlation coefficient defined in this 
way indicates perfect correlation, - 1 indicates perfect anti-correlation and 0 
indicates essentially uncorrelated images. Figure 9 shows the correlation coefficient 
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as a function of the interframe gap for two sets of image sequences in the jet and two 
sets in the wake. Even adjacent frames, separated by no more than about four 
Kolmogorov scales, are essentially uncorrelated ; an increase in the interframe 
distance monotonically reduces this small correlation even further. Similar 
calculations can be made to quantify interface correlations at  larger scales by 
considering boxes of size larger than those considered here. Because this operation 
amounts to a coarse graining, it is expected that the correlation increases with the 
box size. 

3.4. Fractal dimension results 
It has been shown that the interface is a fractal-like surface (Sreenivasan & 
Meneveau 1986) ; a quantity that characterizes a fractal being its fractal dimension, 
its measurement is of interest. The meaning of the fractal dimension and its 
usefulness in contexts of mixing and entrainment are discussed in Gouldin (1988) and 
Sreenivasan et a2. (1989). We must remark, in view of the evidence (93.3) that the 
interface is largely contiguous, that  the fractal dimension is essentially a measure of 
the degree of its convolutedness (and not of fragmentation). 

The determination of the fractal dimension of the interface (an object residing in 
the three-dimensional space in a complex way) by the direct procedure of covering 
them by boxes of varying sizes is most often not practicable. We have shown 
elsewhere (Sreenivasan & Meneveau 1986; Prasad & Sreenivasan 1990) that one 
way of measuring the fractal dimension of such surfaces is to  measure the dimension 
D, of the boundary of its intersection by a thin plane, and use the so-called law of 
additive codimensions (Marstrand 1954 ; Mandelbrot 1982) ; according to this law, 
the fractal dimension of the surface itself is given by D, + 1. The fractal dimension of 
such two-dimensional intersections has been measured and the results presented in 
Prasad & Sreenivasan (1990). It is important to examine whether such estimates 
agree. with that measured from the full three-dimensional data. Equivalently, we 
want to assess directly the validity of the additive law; many indirect, but essentially 
complete, sets of arguments were presented in Prasad & Sreenivasan (1990). 

In  previous measurements from two-dimensional intersections, the box-counting 
algorithm was used to determine the fractal dimension. This algorithm (described, 
for example, in Sreenivasan & Meneveau 1986) basically requires that the plane of 
intersection (in which the boundary appears as a convoluted curve) be covered with 
disjoint square area elements (‘boxes ’) of varying size. The number of boxes N ( r )  
required to cover the interface is then counted as a function of the size r of the box. 
If the curve is a fractal, an extended straight portion would be observed in log-log 
plots of N ( r )  11s. r, the negative slope of the line being the fractal dimension D, of the 
boundary in intersection. Figure 10 shows a typical log-log plot from an arbitrarily 
chosen image in the three-dimensional sequence for the wake; a reasonably well- 
defined straight line exits, and gives a D, of 1.35L-0.05. Using the additive law, the 
dimension of the interface is 2.35 k0.05. This is in good agreement with the measured 
dimension of 2.36 from earlier single frame images. (Even though the resolution in 
the present images is only about a third as good as in our earlier single frame 
ones, we have shown elsewhere (Prasad 1989; Prasad & Sreenivasan 1990) that the 
difference in fractal dimensions obtained with resolutions of the order 7 and 47 is 
quite negligible.) 

As already remarked, we cannot access the entire interface in three-dimensional 
space, its extent in the z-direction being limited to the range of approximately 47 to 
327. I n  this range, though, it is possible to use the direct method of covering the 
interface with three-dimensional boxes of varying sizes. The negative slope of the 
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FIGURE 10. A typical log-log plot of the number N(r) of square area elements (‘boxes’) of size r 
containing the interface vs. the box size r .  The negative slope of the straight part gives the fractal 
dimension of the boundary in intersection (=  1.35). 

log,, ( r )  
FIGURE 11. A typical log-log plot of the number of boxes N(r)  required to cover the accessible part 
of the interface in three-dimensional space 218. the size of the box r .  Data from the axisymmetric 
turbulent jet. The dimension corresponding t o  the slope of the line drawn is about 2.35. 

straight part of the log-log plots of N(r)  vs. r would directly yield the fractal 
dimension of the surface. Figure 11 shows a typical log-log plot for jets obtained by 
boxing the accessible portion of the surface; data for wakes shows identical 
behaviour. The scaling for both jets and wakes extends over the entire range 
available; the average fractal dimension is 2.35k0.04 for both flows. This agrees 
rather well with earlier measurements from two-dimensional sections (Sreenivasan & 
Meneveau 1986; Prasad & Sreenivasan 1990), and the present results of figure 10. In 
our view, this establishes the fractal nature of the scalar interface in turbulent flows, 
and directly verifies the applicability of the method of intersections. 

3.5. A temporal sequence of images 
It is also possible using the procedure described above to acquire a temporal sequence 
of images. This is done by eliminating the rotating mirror in figure 1 and acquiring 
a set of images as before. The sequence of eight planes is now a t  the same physical 
location but traces the temporal evolution of the scalar-marked regions. Since the 
framing camera acquires images at  lo4 frames per second, the time delay between 
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FIGURE 12. For caption see facing page. 
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FIGURE 13. A qualitative representation of the interface propagation in two images a t  slightly 
different times. The numbers on top correspond to the positions in the image sequence. 

two successive images is comparable with the Batchelor scale. Figure 12 shows a 
sequence of images acquired in the axisymmetric jet. 

By marking the position of the interface in two successive images, one can get an 
appreciation of the motion of the interface ; this information is qualitative because 
one does not know where precisely a piece of the interface in one image ends up in 
the other. Figure 13 gives the positions of the interface in two images in a temporal 
sequence. The interface moves a t  different speeds a t  different positions, the speed 
being generally larger towards the front of the flow. 

4. Scalar ‘dissipation ’ 
A quantity of practical interest, for example in the context of turbulent mixing of 

reactants involving fast chemistry, is the dissipation of passive scalar fluctuations 
= 2 r ( i 3 0 / 3 ~ ~ ) ~ ,  where xi represent spatial coordinates and 0 is a passive scalar (e.g. 

concentration c of a contaminant or temperature T ) ,  and r the corresponding 
molecular diffusivity ; summation is implied on the index i. This dissipation is 
analogous to the dissipation of turbulent kinetic energy, e, but different from it 
because it does not involve cross-terms and contains only three positive definite 
terms. All of them can in principal be obtained by the techniques used here. Since the 
resolution here is about three Kolmogorov scales, we obtain the quantity x*, where 

x* = [(Ac)/Azt12, (4 .1)  

the difference concentration Ac being obtained with resolution of the order of 37. For 
convenience, we have omitted the constant factor 2I‘ in (4.1), and shall refer below 
to x* as the ‘dissipation’ rate. Figure 14(a-d) shows for the jet the three components 
of x* and their sum obtained from a single frame of a jet image sequence such as that 
shown in figure 5. As expected, the ‘dissipation’ field is highly intermittent and the 
three components, while alike in the overall sense, have some differences. For 
example, x: appears to be less intermittent than the other two components, 
consistent with the single point measurements of Sreenivasan et al. (1977).  

Using the temporal sequence of images, one can construct the x* field a t  different 

FIGURE 12. A temporal evolution of the concentration of scalar-marked regions in an axisymmetric 
jet in an axial plane. The interframe time, lo-* s, is comparable with the Batchelor timescale in the 
flow. 
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FIGURE 15. The ‘dissipation ’ field at  two successive instants of time which are 100 ps apart. Notice 
that the dissipation field has changed significantly in that time. It is evident that these changes 
cannot be attributed to advection by the mean motion because it is negligibly small. This 
behaviour is therefore attributed t o  temporal intermittency. 

times in the same region of the flow. Two typical cases are shown in figure 15. The 
time interval between them is lop4 s. During this interval, there is negligible motion 
- a t  any rate no more than about a pixel’s equivalent. In  view of this, it is interesting 
that large changes in the ‘dissipation’ field are observed a t  some locations in the 
images. We tentatively attribute this to temporal intermittency whose direct 
observation does not seem to have been made before. 
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FIGURE 16. The normalized probability densities of the quantities (AclAx),  (AclAy) and (Ac/Az). 
The abscissae are normalized by the respective root-mean-square values, and the ordinates are 
normalized correspondingly. 

4.1. Probability densities and moments 
For clarity in the following discussion, we reiterate that we have in each sequence all 
three components of x* in seven parallel planes of the flow. Ten such sequences were 
considered for each flow. We have found that the space averages of the components 
of x* are not equal in general even if the averaging domain is restricted to  the interior 
regions of the flow. This is in contradiction to broad expectations of local isotropy. 
To assess the anisotropy in a gross sense, we have calculated the ratios xz/x: and 
x,*/x,* from a total of 75 image pairs. (Subscripts denote the directions of derivatives.) 
Averaging was performed over the entire extent of the images to avoid arbitrariness. 
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These ratios are 0.53+0.18 and 0.71 k0.22, similar to the earlier findings from point 
measurements of Sreenivasan et al. (1977). 

The normalized probability densities of the concentration gradients are given in 
figure 16(a+). These are averages taken over one sequence of images. There are some 
differences among the three gradients. We again call attention to exponential tails. 
The part of the probability density near zero concentration gradients is generally 
affected by the noise outside the scalar-marked regions, and possibly also the 
interface itself. If the averaging is restricted completely to regions interior to the 
interface, a larger segment of the curve can be represented by exponentials ; also, the 
peak near zero concentration gets suppressed somewhat and becomes more rounded. 

The skewness of the gradient's, computed from the spatial averages over 70 image 
pairs, is close to zero even though it fluctuates from one image to the other rather 
strongly. Noting that the averaging is performed over the entire extent of the images 
in each case, the zero values for the skewness of AclAy and AclAz reflect the obvious 
symmetry in the flows. The similar behaviour shared by Ac/Ax suggests that 
asymmetries in the x-direction are also not too large. The flatness factor for all three 
gradients, computed similarly, is about 10 for jets and about 30 for wakes ; in general, 
wakes display larger int'ermittency. 

4.2. Joint statistics of the concentration and its 'dissipation ' 
In  figure 14(ad),  we showed typical spatial distributions of x,*, x,*, x,* and x*. In 
figure 17 ( a d )  we show for the same case the products cxz ,  cx;, cx: and cx*, (Note : 
c is not the concentration fluctuation, but the local concentration above zero in 
arbitrary units.) It is clear that the pictures are even more peaked and intermittent 
than the 'dissipation' itself, and values two orders of magnitude larger than the 
product of the means are not unlikely. 

A quantity of interest in reacting flows is the joint probability density of the 
concentration and its dissipation ; similar interest surrounds the conditional densities 
of the scalar and its three gradients. Figure 18 shows the joint densities of c and 
AclAx,, and of c and x*. Because the scalar dissipation possesses a sharp probability 
density with long tails, it is difficult to extract quantitative data from figure 18. For 
this reason, we have provided in figure 19 the iso-probability contours for c and 
(AcIAz) and c and x". The contours involving the other two gradients of c are not 
very different. 

4.3. Multifractal properties of the dissipation jield 

A fundamental aspect of the dissipation field is its spatial and temporal 
intermittency. It is clear that  such highly intermittent processes cannot be described 
efficiently by conventional moment methods which are good for Central Limit-type 
processes ; in particular, the mean and the variance of a Gaussian process describe it 
completely. For processes which are close to Gaussian, it can be expected that a few 
low-order moments contain most of the information. On the other hand, for processes 
of the type shown in figure 14, it is clear that the first few moments give very little 
clue to their nature. 

It has been recognized (Mandelbrot 1974; Frisch & Parisi 1985; Halsey et al. 1986) 
that intermittent measures arising in nonlinear systems lend themselves to be 
characterized by what are called multifractals in the present parlance of dynamical 
systems. For a historical account of the subject of multifractals see the above 
references and Meneveau & Sreenivasan (1987). One way of building multifractals is 
to proceed from one scale (to be called the parent scale) to the next smaller ones (the 
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FIGURE 19. Iso-probability contours for the joint densities. They are similar for all three gradients, 
but that involving the gradient AcC/Az is shown - partly as a representative and partly because i t  
is the hardest to measure. 

offspring) in such a way t,hat the measure (roughly, the flux of scalar 'dissipation') 
contained by the parent scale is unequally divided among its offspring. When such 
a procedure is repeated over many steps, it  is clear that the measure on each 
succeedingly higher generation offspring will become more and more uneven. If the 
basic rule determining the nature of the unequal division from a parent scale to its 
offspring is independent of the generation level, one expects to see certain scale 
similar properties. Since the measure on an arbitrarily chosen offspring a t  any given 
generation level is determined by the product of the multipliers (that is to say, 
numbers characterizing the unequal division of the measure) of all its forefathers, a 
multifractal is associated with a multiplicative process. Under certain restrictive 
circumstances, the underlying multiplicative process can be identified uniquely by 
studying the scaling structure of the multifractal; this, however, is an exception 
rather than the rule (Chhabra, Jensen & Sreenivasan 1989). 
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Because the measure associated with an offspring at  any level is the product of the 
multipliers of all its forefathers, it is clear that the scaling will only be local ; there 
is therefore the expectation that many, in fact infinitely many, scaling indices are 
necessary to describe multifractals. The purpose of analysis is to quantify these 
various scaling indices and unravel some of their properties. A practical way of doing 
it is to divide the domain in which the ‘dissipation’ resides into boxes of a certain 
size, and to write that the total amount of ‘dissipation ’ on each of these boxes follows 
power laws of the following type: 

where X, is the integral of x* over a box of size r ,  and x is the position of the (centre 
of the) box in the space in which the multifractal is embedded. The rationale for 
writing (4.2) is merely that it generalizes our perception in Euclidean geometry, for 
which the index a would be equal to the dimension of the embedding space d (that 
is, unity in one-dimensional space, 2 in two-dimensional space and so on). For fractal 
distributions, a can have non-integer values. If the scaling were global, as in the case 
of unifractals (which is what one understands usually by the term fractal), one would 
expect a to be independent of position in the embedding space. A characteristic of 
multifractals is that a depends on x. In general, a is bounded on both sides by an amin 
and an amax. 

A significance of the index a (called variously as the Holder exponent or the 
crowding index) becomes obvious if we rewrite from (4.2) an expression for the 
intensity of dissipation xr in a box of size r .  Since this is merely the total amount of 
dissipation X, in a box of size r divided by the ‘volume’ of the box, we get for a d- 
dimensional space 

According to (4.3), whenever a(x) < d,  X, increases indefinitely as the box size 
shrinks, and represents spikes (or, singular regions) in the distribution of x,; smaller 
values of a represent larger spikes. On the other hand, U-values greater than d 
represent smooth (or regular) distributions, and hence a can be thought of an index 
which characterizes ‘ singularities ’ of different strengths. This interpretation has 
been taken to its logical conclusion in the case of energy dissipation (Sreenivasan & 
Meneveau 1988). 

Now, corresponding to each a, or each iso-a set, one can identify a fractal 
dimension f (a ) .  That is, the number N J a )  of boxes of size r covering the iso-a set 
varies as 

Recalling the similar expression for the number of boxes in the case of fractals (see 
$3), we see that f ( a )  has the meaning of the fractal dimension of the iso-a set. In this 
picture, local singularities of different strengths a are distributed on interwoven sets 
of varying dimensionality f (a ) .  A curve o f f v s .  a is therefore a means of disentangling 
fractal sets which are interwoven together to give the complicated multifractal under 
consideration. 

In a different framework, Hentschel & Procaccia (1983) showed that moments of 
order q obey power laws and involve the so-called generalized dimensions D,. In the 
present context, the set of generalized dimensions D, is defined by dividing an 
appropriately chosen ‘dissipation ’ region into smaller square regions of size r ,  and by 
identifying power-laws (Hentschel & Procaccia 1983 ; Halsey et al. 1986 ; Meneveau 
& Sreenivasan 1987) of the type 

x, - +), (4.2) 

xr h/ yor(x)-d. (4.3) 

N,(a) - r-f(a). (4.4) 

2 (X, /X,) ,  - r(*-l)Dq, (4.5) 
2-2 
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where X, is the total dissipation, and the sum is taken over all squares of size r 
contained in the domain. The meaning of raising the measure X,. to a power q is that, 
if q is positive and large, only the large-intensity regions will be picked by the 
summation in (4.4) while least intense regions correspond to D, with large negative 
q. According to (4.5)’ if log-log plots of [C(X,./XL)Q]l/(q-l) ws. r present linear regions 
for r within a certain scaling range, then the slopes correspond to D,. From the D, 
curves, the f(a)-curves can be computed using the Legendre transforms (Halsey et al. 
1986; Meneveau & Sreenivasan 1987) 

a = d/dq[(q-l)DQ], f ( a )  = q a - ( ( g - l ) D q .  (4.6a, b )  

In  some form, these ideas have been discussed in the context of turbulence by 
Mandelbrot (1974), Benzi et al. (1984) and Frisch & Parisi (1985). The first 
measurements were made by Meneveau & Sreenivasan (1987) for the energy 
dissipation and by Prasad et al. (1988) for the scalar ‘dissipation’ field. Meneveau & 
Sreenivasan (1987) have measured the D, ws. q curve and f ws. a curves for one- 
dimensional sections of the dissipation of turbulent kinetic energy, and shown them 
to be universal features of fully developed turbulence. Prasad et al. (1988) obtained 
two components of the scalar ‘dissipation ’ from two-dimensional LIF images. Here, 
since we are capable of measuring all three components of x*, some useful results on 
the nature of differences among them can be obtained. Our purpose here to measure 
the D, ws. q andf(a) vs. a curves, and examine the multifractal properties of x* as well 
as of each of its three components. 

Several methods can be used for the computation of thef(a)-curve. Following the 
lead of Halsey et al. (1986) in dynamical systems, Meneveau & Sreenivasan and 
Prasad et al. used a procedure that requires the computation of the generalized 
dimensions first, and the use of Legendre transforms (4.6). Direct methods of 
computing the f(a)-curve have been applied to turbulence data (Meneveau & 
Sreenivasan 1989; Chhabra et al. 1989). We have resorted to the intermediary of the 
generalized dimensions. As explained above, this requires the computations of the 
slopes in the log-log plots of [L’(XT/XL)Q]lI(q-l) ws. r .  This is repeated for 12 different 
values of r ranging from 1 pixel, corresponding roughly to r = 37, up to r = 150 
pixels. 

Typical log-log plots of [C(X,./XL)Q]l/(Q-l) ws. r are shown in figure 20 for 
representative q values. A scaling range can be observed from r - 1 pixel to r - 80 
pixels. The slopes of these straight lines give D,. From the average D, values taken 
over many realizations and the use of the Legendre transforms (4.6), thef(a) vs. a 
curve was computed. 

It is now possible to compare the f ( a )  measured using each of the different 
components of the dissipation field. Similar comparisons have been reported earlier 
(Prasad et aZ. 1988), but all three components of x* were not measured simultaneously 
as they are in this investigation. Figure 21 shows the f(a)-curve computed for the jet 
using each of the three components independently as well as for the total ‘dissipation ’ 
field. The f ( a )  values for all of them agree well within experimental uncertainties. 
This is an important result in that  it establishes that the multifractal properties of 
the ‘dissipation’ can be obtained by using only one of its three components. 

We have also processed the wake data similarly, and found that they agree well 
with the jet data. This suggests that thef(a)-curve is a universal property of the 
‘dissipation’ field of the scalar, confirming a similar conclusion of Meneveau & 
Sreenivasan (1987) for the energy dissipation field. 

(We should make an important point here for experts on multifractals. In two- 
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I I ' 0  

0 2 

FIGURE 20. Typical log-log plots of [x (X,/XL)q]l'(q-l) ws. r from the dissipation field of the wake for 
five different values of q :  -4, -2 ,0 ,2 ,4 .  Power law regions are seen for each q, extending from 
r - 1 pixel to r - 80 pixels. 

a 

F I G U R E  21. Thef(a)-curves calculated using each of the different companents of x*. The -x- curve 
represents the x-component, the -y- curve the y-component, the -z- curve the z-component and the 
-d- curve the total 'dissipation' field. 

dimensional images, Prasad et al. (1988) selectively chose regions of scalar 
fluctuations which were away from the interface. That is, their f(a)-curve was 
appropriate to the dynamics of the flow interior. While this choice is always possible 
in one-dimensional sections on the axis and carefully chosen parts of two-dimensional 
images, it is essentially impossible in three dimensions; for, however small a domain 
one chooses (as long as it is bigger than the inner cut-off scale), the interface 
intersects that domain a t  some place or another. Thus, i t  is in principle impossible 
to  find the f(a)-curve only for the interior region, and the entire image including the 
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interface should be considered in toto. This makes no difference to small U-values 
which correspond to high-intensity regions of the dissipation found only in the 
interior, but this is of some consequence to the larger values of a. Since there is 
always a jump (even though not a large one) of concentration across the interface, 
inclusion of the interface will always produce peaks of some magnitude in x* in any 
box one chooses. Thus, there will nowhere be regions where large a values can be 
found; technically, therefore, some values of a would be absent. The f(a)-curve 
should therefore be very similar to that of the interior for all values of a below a 
certain value, but must show a precipitous drop at some larger value. Equivalently, 
the D, curve for p lower than a certain value will either flatten or increase much less 
rapidly. We tentatively propose that this sudden drop can be thought of in a rough 
sense as corresponding to a (phase) transition from bulk-dominated properties to 
surface-dominated properties.) 

4.4. Resolution eSfects 

An important question concerns scalar fluctuations on scales below the Kolmogorov 
scale which remain unresolved in present experiments. For example, what effect does 
this have on the statistical properties including multifractal spectra ? This has 
been considered briefly in Prasad & Sreenivasan (1990) by making single point 
measurements of dye concentration fluctuations in jets and wakes by optical 
methods. The spatial resolution was of the order of 4 p m  (comparable with the 
Batchelor scale) and the frequency response (of a t  least up to 320000 Hz) resolved 
the corresponding timescale. For details of how such fine resolutions were obtained, 
the reader should consult the reference cited above. We verified that conventional 
spectral data showed the expected scaling in the regimes between 7 and yb and 
between 7 and L .  

Multifractal spectra were obtained separately for the two scaling regimes. Taylor’s 
hypothesis was used, but its usefulness in this specific context was established 
(however, with some important qualifications) in Prasad, Meneveau & Sreenivasan 
(1990). When the additive law ($3.4) was applied, the multifractal spectrum for the 
scale range between L and 7 agreed well with the present data. The conclusion is that 
the scaling properties in the two regimes are independent of each other. Further, we 
also computed from these finely resolved data the p.d.f.s for the concentration 
fluctuations and its gradients. The finer-resolution data detected outer intermittency 
regions that were not registered in measurements with coarser resolution, and 
displayed a much sharper peak corresponding to the zero concentration of the outer 
tank fluid. Other parts of the p.d.f. distributions are essentially the same. 

5. Summary of conclusions 
We have measured, with spatial resolution of the order of the Kolmogorov scale, 

the three-dimensional field of a passive scalar in fully turbulent flows a t  moderate 
Reynolds numbers. The technique consists of the quantitative mapping, effectively 
instantaneously, of the concentration field in several parallel planes. This is made 
possible by combining the unique capabilities of the framing camera with a relatively 
large CCD array. The measurements allow us to examine several issues concerning 
the three-dimensional structure of the passive scalar field. First, some aspects of the 
scalar interface have been studied. We showed that the scalar-marked regions do 
not generally detach themselves from the main body. We then devised a simple 
scheme for correlating the interface shape from one parallel plane to another. Its 
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application showed that, in spite of the large structure, the randomness associated 
with small-scale convolutions of the interface are strong enough that any two 
intersections of it by parallel planes are essentially uncorrelated even if the 
separation distances are of the order of a few Kolmogorov scales. The fractal 
dimension of the interface was determined directly by box counting in three 
dimensions, and the value of 2.35k0.04 is shown to be in excellent agreement with 
that previously inferred from two-dimensional sections. This justifies the use of the 
method of intersections. Finally, we obtained a time sequence of two-dimensional 
images resolving motions associated with the Batchelor scale; this enables us to 
detect temporal intermittency in turbulent flows, and qualitatively the propagation 
speeds of the scalar interface. 

The second contribution involves the joint statistics of the scalar field and the 
quantity x* which is the appropriate approximation (due to finite resolution effects) 
to the scalar dissipation field in the inertial-convective range of scales. Here, we 
showed that the variances (with averaging performed over space) of the three 
components of x* are substantially different in magnitude, but their non-dimensional 
probability functions are not very different -a t  least to the extent that the third- and 
fourth-order moments are concerned. Several measures of the joint probability 
density between the concentration c and its ‘dissipation ’, and that between c and its 
spatial derivatives have been measured. 

The third aspect relates to the multifractal scaling properties of the spatial 
intermittency of x* ; since all three components of x* have been obtained effectively 
simultaneously, inferences concerning the scaling properties of the individual 
components and their sum have been possible. The usefulness of the multifractal 
approach for describing highly intermittent distributions of x* and its components 
is explored by measuring the so-called singularity spectrum (or the f(a)-curve) which 
quantifies the spatial distribution of various strengths of x*. We have shown that a 
single component can serve as an excellent surrogate for the total dissipation. 

We have also established the quality of the data by making, where possible, 
comparisons with previous measurements. Although the resolution in the present 
measurements is on the order of three Kolmogorov scales, it  has been argued that the 
scaling properties in the appropriate scaling range are correct. 

Finally, we note that the analysis of these three-dimensional data is by no means 
complete at this stage, and we are in the process of extracting more physical features 
of the scalar field. 
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